On the Support Size of Stable Strategies in Random Games

نویسندگان

  • Spyros C. Kontogiannis
  • Paul G. Spirakis
چکیده

In this paper we study the support sizes of evolutionary stable strategies (ESS) in random evolutionary games. We prove that, when the elements of the payoff matrix behave either as uniform, or normally distributed independent random variables, almost all ESS have support sizes o(n), where n is the number of possible types for a player. Our arguments are based exclusively on the severity of a stability property that the payoff submatrix indicated by the support of an ESS must satisfy. We then combine our normal–random result with a recent result of McLennan and Berg (2005), concerning the expected number of Nash Equilibria in normal–random bimatrix games, to show that the expected number of ESS is significantly smaller than the expected number of symmetric Nash equilibria of the underlying symmetric bimatrix game. JEL Classification Code: C7 – Game Theory and Bargaining Theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionarily Stable Strategies of Random Games, and the Vertices of Random Polygons1 by Sergiu Hart,

An evolutionarily stable strategy (ESS) is an equilibrium strategy that is immune to invasions by rare alternative (“mutant”) strategies. Unlike Nash equilibria, ESS do not always exist in finite games. In this paper we address the question of what happens when the size of the game increases: does an ESS exist for “almost every large” game? Letting the entries in the n × n game matrix be indepe...

متن کامل

Counting Stable Strategies in Random Evolutionary Games

In this paper we study the notion of the Evolutionary Stable Strategies (ESS) in evolutionary games and we demonstrate their qualitative difference from the Nash Equilibria, by showing that a random evolutionary game has on average exponentially less number of ESS than the number of Nash Equilibria in the underlying symmetric 2-person game with random payoffs.

متن کامل

Equilibrium selection in evolutionary games with random matching of players.

We discuss stochastic dynamics of populations of individuals playing games. Our models possess two evolutionarily stable strategies: an efficient one, where a population is in a state with the maximal payoff (fitness) and a risk-dominant one, where players are averse to risks. We assume that individuals play with randomly chosen opponents (they do not play against average strategies as in the s...

متن کامل

ارتباط راهبردهای مقابله‌ای و سبک‌های اسنادی با خطر فرار از منزل در دختران نوجوان شهر مشهد

AbstractObjectives: This study was conducted to examine the relationship of coping strategies and attributional styles with the risk of running away from home, among female adolescents. Method: 500 females from Meshed city (located in north east of Iran) high schools at districts 2, 5 and 7 were selected using random cluster sampling. All subjects completed 4 questionnaires: demographic charact...

متن کامل

Nash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs

In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2007